# CHEMISCHE BERICHTE

In Fortsetzung der

# BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT

herausgegeben von der

### GESELLSCHAFT DEUTSCHER CHEMIKER

108. Jahrg. Nr. 8

S. 2487-2826

Organometallphosphin-substituierte Übergangsmetallkomplexe, XIX<sup>1)</sup>

# Tetracarbonyl(organometallphosphin)eisen-Komplexe

Herbert Schumann\*, Lutz Rösch, Heinz-Jürgen Kroth, Heinrich Neumann und Brigitte Neudert

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, D-1000 Berlin 12, Straße des 17. Juni 135

Eingegangen am 23. Januar 1975

Pentacarbonyleisen reagiert bei UV-Bestrahlung mit Tri(*tert*-butyl)phosphin (1), Di(*tert*-butyl)trimethylsilyl-, -germyl- bzw. -stannylphosphin (2-4), *tert*-Butylbis(trimethylsilyl-, -germyl- bzw. -stannyl)phosphin (5-7) sowie mit Tris(trimethylsilyl-, -germyl- bzw. -stannyl)phosphin (8-10) unter Abspaltung eines CO-Liganden und Bildung entsprechender Tetracarbonyl(organometallphosphin)eisen(0)-Komplexe 1a - 10a. Die Infrarot-, Raman-, <sup>1</sup>H-NMR- und <sup>31</sup>P-NMR-Spektren werden diskutiert.

# Organometalphosphine-substituted Transition Metal Complexes, XIX<sup>1</sup>) Tetracarbonyl(organometalphosphine)iron Complexes

Pentacarbonyliron reacts under u. v. irradiation with tri(*tert*-butyl)phosphine (1), di(*tert*-butyl)trimethylsilyl-, -germyl- and -stannylphosphine (2-4), *tert*-butylbis(trimethylsilyl-, -germyl- and -stannyl)phosphine (5-7) as well as with tris(trimethylsilyl-, -germyl- and -stannyl)phosphine (8-10) with displacement of one CO-ligand and formation of the corresponding tetracarbonyl-(organometalphosphine)iron complexes 1a - 10a. The i. r., Raman, <sup>1</sup>H n. m. r., and <sup>31</sup>P n. m. r. spectra of the complexes are discussed.

Metallcarbonyle reagieren mit  $\sigma$ -Donatoren, wie sie Organophosphine und organometallsubstituierte Phosphine darstellen, unter Verdrängung von CO-Gruppen. Kürzlich berichteten wir über die Ergebnisse unserer Untersuchungen an einer systematischen Reihe von Tricarbonyl(organometallphosphin)nickel(0)-Komplexen<sup>1)</sup>. In Fortführung

<sup>&</sup>lt;sup>1)</sup> XVIII. Mitteil.: H. Schumann, L. Rösch, H. Neumann und H.-J. Kroth, Chem. Ber. 108, 1630 (1975).

dieser Arbeiten wird nachfolgend über Tetracarbonyleisen(0)-Komplexe mit Trimethyl-Element-IVb-phosphinen als fünftem, an das zentrale Eisenatom gebundenem Liganden berichtet<sup>2)</sup>.

#### Darstellung und Eigenschaften

Die Darstellung von Monosubstitutionsprodukten des Pentacarbonyleisens kann auf verschiedenen Wegen erfolgen<sup>3-5)</sup>. Zur Synthese von Tetracarbonyl(organometallphosphin)eisen-Komplexen erweist sich jedoch die photochemische Methode<sup>6)</sup> als besonders gut geeignet. Dazu bestrahlt man Lösungen von Pentacarbonyleisen und Tri(*tert*-butyl)-phosphin (1), Di(*tert*-butyl)trimethylsilyl-, -germyl- bzw. -stannylphosphin (2-4), *tert*-Butylbis(trimethylsilyl-, -germyl- bzw. -stannyl)phosphin (5-7) oder Tris(trimethylsilyl-, -germyl- bzw. -stannyl)phosphin (8-10) in wasserfreiem Tetrahydrofuran bei Raumtemperatur 1-3 Stunden mit UV-Licht. Unter Abspaltung von nur einer CO-Gruppe entstehen die Komplexe 1a-10a in Ausbeuten zwischen 50 und 90%.

$$(CO)_5 Fe + [(CH_3)_3 C]_3 P \xrightarrow{\Lambda \nu} (CO)_4 FeP[C(CH_3)_3]_3 + CO$$
(1)  
1 18

$$(CO)_{5}Fe + [(CH_{3})_{3}C]_{2}PE(CH_{3})_{3} \xrightarrow{h\nu} (CO)_{4}FeP[C(CH_{3})_{3}]_{2}E(CH_{3})_{3} + CO (2)$$

$$2-4 \qquad \qquad 2a-4a$$

$$(CO)_{5}Fe + (CH_{3})_{3}CP[E(CH_{3})_{3}]_{2} \xrightarrow{h\nu} (CO)_{4}FePC(CH_{3})_{3}[E(CH_{3})_{3}]_{2} + CO \quad (3)$$

$$5-7 \qquad 5a-7a$$

$$(CO)_{5}Fe + P[E(CH_{3})_{3}]_{3} \xrightarrow{h\nu} (CO)_{4}FeP[E(CH_{3})_{3}]_{3} + CO \qquad (4)$$

$$8-10 \qquad 8a-10a$$

| Е | Si   | Ge   | Sn             |
|---|------|------|----------------|
|   | 2,2a | 3,38 | 4,4a           |
|   | 5,5a | 6,68 | 7,7a           |
|   | 8,8a | 9,9a | 10,10 <b>a</b> |
|   |      |      |                |

Nach mehrtägigem Aufbewahren der Reaktionslösung bei -70 °C fallen die Verbindungen 1a-10a in Form von bräunlich gefärbten Pulvern aus, welche durch Waschen mit Pentan und anschließende Sublimation bei  $10^{-6}$  Torr und 50 °C gereinigt werden können. In reiner Form sind diese Eisenkomplexe gelbe Kristalle, die in Benzol monomer vorliegen. Bei Zutritt von Luftsauerstoff werden die Verbindungen rasch zu schmierigen braunroten, paramagnetischen Substanzen oxidiert.

<sup>&</sup>lt;sup>2)</sup> Über einen Teil dieser Verbindungen haben wir schon früher berichtet. Da es damals jedoch nicht möglich war, sämtliche hier besprochenen spektroskopischen Daten zu erhalten, war eine Neudarstellung notwendig. Siehe: H. Schumann, O. Stelzer, U. Niederreuther und L. Rösch, Chem. Ber. 103, 2350 (1970).

<sup>&</sup>lt;sup>3)</sup> E. W. Abel und F. G. A. Stone, Quart. Rev. 24, 498 (1970).

<sup>&</sup>lt;sup>4)</sup> H. L. Conder und M. Y. Darensbourg, J. Organomet. Chem. 67, 93 (1974).

<sup>&</sup>lt;sup>5)</sup> F. A. Cotton und J. M. Troup, J. Amer. Chem. Soc. 96, 3438 (1974).

<sup>6)</sup> W. Strohmeier und F. J. Müller, Chem. Ber. 102, 3613 (1969).

|                                         |                  | 19                     |          | 2a                   |                   | a                    | 88             |                          |
|-----------------------------------------|------------------|------------------------|----------|----------------------|-------------------|----------------------|----------------|--------------------------|
| Zuordnung                               | IR               | RE                     | IR       | RE                   | IR                | RE                   | IR             | RE                       |
| v <sub>as</sub> CH <sub>3</sub> )       |                  | 3030 (0)<br>2995 (0)   |          |                      |                   | 2965 (0):            |                | 2980 (0)                 |
| und<br>v <sub>s</sub> CH <sub>3</sub> } |                  | 2922 (1)<br>2904 (Sch) |          | 2912 (1)             |                   | 2904 (1)             |                | 2966 (0)<br>2905 (1)     |
| (                                       | 2045 st          | 2035 (1)               | 2042 st  | 2036 (1)             | 2040 st           | 2035 (0)             | 2040 st        | 2035 (1)                 |
|                                         | 1963 st          | 1960 (1)               | 1962 st  | 1959 (1)             | 1960 st           | 1958 (1)             | 1960 st        | 1968 (2)                 |
| vCO                                     | 1924 sst         | 1949 (1)               | 1925 sst | 1940 (Sch)           | 1923 sst          | 1919 (Sch)           | 1925 sst       | 1962 (Sch)<br>1930 (Sch) |
|                                         | 1890 s           | 1913 (Sch)             | 1890 s   | (1) 17(1             | 1890 s            | (1) +1/1             | 1890 s         | 1920 (Sch)               |
| (                                       |                  | 1480 (0)               |          | 1470 (0)             |                   | 1463 (0)             |                |                          |
|                                         |                  | 1468 (0)<br>1398 (0)   |          | 1450 (0)             |                   | 1448 (0)             |                | 1412 (0)                 |
|                                         |                  | 1375 (0)               |          |                      |                   |                      |                | 1373 (0)                 |
| ocn <sub>3</sub>                        |                  | ~                      |          |                      | 1265 Sch          |                      | 1265 Sch       | 1275 (0)                 |
|                                         |                  |                        | 1252 m   |                      | 1251 m            |                      | 1251 m         | 1252 (0)                 |
| vacca<br>und<br>nCH,                    | ,                | 1193 (0)<br>1178 (0)   | 1170 m   | 1192 (0)<br>1172 (0) |                   | 1198 (0)<br>1172 (0) |                |                          |
|                                         | 1162 m<br>1023 m | 1168 (Sch)<br>1026 (0) |          |                      |                   |                      |                |                          |
| _                                       | 929 m            | 933 (0)                |          | 935 (0)              |                   |                      |                |                          |
| ρCH <sub>3</sub> (Si)                   |                  |                        | 842 st   |                      | 845 st<br>828 Sch |                      | 843 m<br>825 m |                          |
| v,CC3                                   | 803 m            | 806 (1)                | 805 m    | 809 (1)              |                   | 808 (0)              |                |                          |
| ρCH <sub>3</sub> (Si) }                 |                  |                        | 755 m    |                      | 755 s             | 762 (0)              | 755 s          | 762 (0)<br>750 (0)       |
| v <sub>as</sub> SiC <sub>3</sub>        |                  |                        | 685 m    | (0) 069              | 689 m             | 695 (0)              | 689 ш          | 695 (0)                  |
| v <sub>s</sub> SiC <sub>3</sub>         |                  |                        | 632 st   | 639 (1)              | 628 Sch           | 638 (1)              | 629 Sch        | 636 (2)                  |
| δ <sub>s</sub> FeCO(äq)                 | 635 Sch          | 639 (0)                | 632 st   | 639 (1)              | 628 Sch           | 638 (1)              | 629 Sch        | 636 (2)                  |
| s Eacovian)                             | 625 st           | 633 (0)                | 623 st   |                      | 621 st            |                      | 620 m          |                          |
|                                         |                  |                        | 617 Sch  |                      | 610 Sch           |                      | 610 Sch        |                          |
|                                         |                  |                        |          |                      |                   |                      |                |                          |

1975

2489

|                                                    | •       |                       |         |           |       |           |       |                  |
|----------------------------------------------------|---------|-----------------------|---------|-----------|-------|-----------|-------|------------------|
| Zuordnung                                          | IR Ia   | RE                    | IR 2    | a<br>RE   | IR    | 5a<br>RE  | IR    | 8a<br>RE         |
| v <sub>as</sub> PC <sub>3</sub> , PC <sub>2</sub>  | 585 m   | 591 (0)               | 598 Sch | 582 (Sch) |       |           |       |                  |
| v, PC <sub>3</sub> , PC <sub>2</sub> , PC          | 562 s   | 568 (1)               | 572 s   | 571 (1)   |       | 571 (0)   |       |                  |
|                                                    |         | 551 (0)               |         |           |       |           |       |                  |
| δ <sub>as</sub> FeCO(äq)                           | 538 m   | 543 (Sch)             | 539 m   | 545 (0)   | 530 s | 540 (0)   | 526 s | 524 (0)          |
| vasFeC(äq)                                         |         | 510 (2)               |         | 509 (3)   |       |           |       |                  |
| - pun                                              | 502 Sch | 502 (2)               | 500 s   |           |       | 499 (1)   |       | 500 (1)          |
| v <sub>s</sub> FeC(ax)                             | 490 m   |                       | 475 Sch |           | 485 s |           | 485 s |                  |
| VasPSi1, 2, 3                                      |         |                       | 468 m   |           | 465 s |           | 446 m |                  |
| ۶CC3                                               | 470 Sch | 473 (Sch)             |         |           |       |           |       |                  |
| v <sub>s</sub> FeC(äq)                             | 432 s   | 441 (3)               | 435 s   | 439 (5)   | 445 s |           | 446 m | 440 (4)          |
| <b>§FeCO</b>                                       | 420 Sch | 422 (Sch)             |         |           |       | 410 (Sch) | 418 s | 424 (Sch)        |
| ۶CC <sub>3</sub>                                   | 392 Sch | 393 (0)               | 388 s   |           |       |           |       |                  |
| 8PC, 8                                             |         | 303 (2)               | 300 s   | 298 (2)   | 305 s | 300 (0)   | 295 s | 300 (0)          |
| δ <sub>as</sub> PC <sub>3</sub> , SiC <sub>3</sub> |         | 258 (0)               |         | 242 (1)   |       |           |       | 253 (0)          |
| δ <sub>s</sub> SiC <sub>3</sub>                    |         |                       |         |           |       | 218 (1)   |       | 230 (0)          |
| δ PSi <sub>2</sub> , PSi <sub>3</sub>              |         |                       |         |           |       | 195 (1)   |       | 200 (1)          |
|                                                    |         | 217 (0)               |         |           |       |           |       | 192 (Sch)        |
| v FeP?                                             |         | 171 (3)               |         | 165 (1)   |       | 185 (0)   |       | 175 (Sch)        |
| seor                                               |         | 135 (Sch)             |         |           |       | 155 (Sch) |       | 130 (Sch)        |
| urec                                               |         | 121 (10)              |         | 110 (10)  |       | 111 (10)  |       | 108 (10)         |
| § PSi                                              |         | 103 (Sch)<br>85 (Sch) |         |           |       |           |       |                  |
| ond<br>SCFeP                                       |         | 71 (Sch)              |         | 65 (Sch)  |       | 68 (1)    |       | 63 (1)<br>40 (0) |
|                                                    |         |                       |         |           |       |           |       | 40 (0)           |

2490

|                                                                           |                                          | 3.0                                                      |                                          | <br>6 a                                        |                                          | )                                              |
|---------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|------------------------------------------|------------------------------------------------|------------------------------------------|------------------------------------------------|
| Zuordnung                                                                 | IR                                       | RE                                                       | IR                                       | RE                                             | IR                                       | RE                                             |
| $v_{as}CH_3$<br>und<br>$v_sCH_3$                                          |                                          | 2983 (0)<br>2915 (1)                                     |                                          | 2994 (Sch)<br>2972 (0)<br>2919 (1)<br>2912 (1) |                                          | 2985 (0)<br>2914 (1)<br>2805 (Sch)             |
| Oberschwing.                                                              |                                          | 2870 (Sch)                                               |                                          | 2912 (1)<br>2980 (Sch)                         |                                          |                                                |
| vCO }                                                                     | 2042 st<br>1964 st<br>1924 sst<br>1890 s | 2033 (1)<br>1953 (2)<br>1930 (Sch)<br>1914 (1)           | 2040 st<br>1962 st<br>1923 sst<br>1890 s | 2034 (1)<br>1958 (2)<br>1920 (2)               | 2040 st<br>1961 st<br>1923 sst<br>1890 s | 2033 (0)<br>1957 (1)<br>1934 (Sch)<br>1919 (1) |
| δCH <sub>3</sub><br>und                                                   |                                          | 1473 (0)<br>1465 (0)<br>1451 (0)<br>1417 (0)<br>1371 (0) |                                          | 1462 (0)                                       |                                          | 1469 (0)<br>1447 (0)<br>1414 (0)               |
| $v_{as}CC_3$<br>und<br>$\rho CH_3$                                        | 1250 s<br>1237 s                         | 1254 (0)<br>1249 (0)<br>1192 (0)                         | 1245 s<br>1235 s                         | 1255 (0)<br>1242 (0)                           | 1245 s<br>1237 s                         | 1255 (0)<br>1238 (0)<br>1197 (0)               |
| J                                                                         | 1169 m<br>1018 s<br>930 s                | 1170 (0)<br>1017 (0)<br>932 (0)                          | 1165 s<br>1012 s<br>929 s                | 1014 (0)<br>935 (0)                            | 1165 s                                   | 1172 (0)                                       |
| $\rho CH_3(Ge)$                                                           | 832 m                                    |                                                          | 832 Sch<br>820 st                        |                                                | 830 Sch<br>818 st                        |                                                |
| v.CC3                                                                     | 805 s                                    | 808 (1)                                                  |                                          | 813 (0)                                        |                                          |                                                |
| δ <sub>s</sub> FeCO(äq)                                                   | 630 Sch                                  | 631 (0)                                                  | 628 Sch                                  | 628 (0)                                        | 627 Sch                                  | 632 (0)                                        |
| $\delta_{as}$ FeCO(äq)                                                    | 623 st                                   |                                                          | 621 sst                                  |                                                | 620 st                                   |                                                |
| v <sub>as</sub> GeC <sub>3</sub> , v <sub>as</sub> PC <sub>2</sub><br>vPC | 591 s                                    | 589 (1)                                                  | 595 m                                    | 599 (3)<br>580 (Sch)                           | 600 m                                    | 604 (2)                                        |
| $v_s$ GeC <sub>3</sub> , $v_s$ PC <sub>2</sub>                            | 568 s                                    | · 573 (2)                                                | 565 s                                    | 573 (6)                                        | 562 s                                    | 672 (5)                                        |
| $\delta_{as}$ FeCO(äq)                                                    | 538 m                                    | 542 (0)                                                  | 530 s                                    | 535 (1)<br>514 (Sch)                           | 520 s                                    | 533 (0)                                        |
| v <sub>as</sub> FeC(äq), v <sub>s</sub> FeC(a                             | x) 495 s                                 | 500 (2)<br>478 (Sab)                                     | 490 s                                    | 498 (4)                                        | 485 s                                    | 490 (2)                                        |
| v <sub>s</sub> FeC(äq)                                                    | 408 \$                                   | 478 (Sell)<br>442 (4)                                    | 439 s                                    | 441 (6)                                        | 125                                      | 441 (3)                                        |
| $v$ GeP, $v_{as}$ Ge <sub>2,3</sub> P                                     |                                          | 387 (0)<br>295 (Sch)                                     | 382 s                                    | 385 (1)                                        | 425 s<br>391 s                           | 396 (1)                                        |
| δPGeC <sub>2</sub>                                                        |                                          | 232 (2)<br>220 (Sch)                                     |                                          |                                                |                                          |                                                |
|                                                                           |                                          | 205 (Sch)                                                |                                          | 208 (5)                                        |                                          | 202 (3)                                        |
| v FeP?                                                                    |                                          | 173 (2)                                                  |                                          | 172 (2)                                        |                                          | 169 (4)                                        |
| $\delta_{as}GeC_3$                                                        |                                          | 160 (Sch)                                                |                                          | 161 (1)                                        |                                          |                                                |
| $\delta_{as}FeC(ax)$                                                      |                                          | 122 (10)                                                 |                                          | 109 (10)                                       |                                          | 104 (10)                                       |
| δFeC<br>und                                                               |                                          | 113 (Sch)<br>86 (5)                                      |                                          | 95 (Sch)<br>76 (Sch)                           |                                          | 96 (Sch)<br>69 (Sch)                           |
| $\delta GePC_2$                                                           |                                          | 57 (Sch)                                                 |                                          | 46 (Sch)                                       |                                          |                                                |

Tab. 2. IR-Absorptionen<sup>\*)</sup> und Raman-Emissionen<sup>b)</sup> der Komplexe **3a**, 6a und **9a** in cm<sup>-1</sup> (sst = sehr stark, st = stark, m = mittel, s = schwach, Sch = Schulter; Werte in Klammern = geschätzte Intensitäten)

<sup>a)</sup> Perkin-Elmer-Infrarot-Spektrometer 457, in Nujol-Suspension zwischen CsJ-Küvetten. Die Bereiche der Absorptionen des Nujols sind ausgespart.
 <sup>b)</sup> Raman-Spektrophotometer, Cary 82, in Substanz, Krypton-Laser, Spectra-Physics, 647.1 nm.

|                                                                                    |                                                     |                                | 4a                                             |                                | 7a                                             | 1                             | 0a                                           |
|------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------|------------------------------------------------|--------------------------------|------------------------------------------------|-------------------------------|----------------------------------------------|
| Zuordnung                                                                          |                                                     | IR                             | RE                                             | IR                             | RE                                             | IR                            | RE                                           |
| v <sub>as</sub> CH <sub>3</sub>                                                    | ]                                                   |                                | 2981 (0)<br>2969 (0)<br>2922 (1)               |                                | 2975 (0)<br>2921 (1)<br>2902 (Sab)             |                               | 2985 (0)                                     |
| v <sub>s</sub> CH <sub>3</sub>                                                     | ∫                                                   |                                | 2922 (1)<br>2900 (Sch)<br>2870 (0)             |                                | 2902 (Sch)<br>2870 (Sch)                       |                               | 2928 (1)                                     |
| νCO                                                                                | }                                                   | 2039 st<br>1960 st<br>1923 sst | 2030 (0)<br>1953 (1)<br>1923 (Sch)<br>1910 (1) | 2038 st<br>1963 st<br>1923 sst | 2031 (0)<br>1954 (1)<br>1924 (1)<br>1910 (1)   | 2038 st<br>1955 m<br>1921 sst | 2027 (0)<br>1951 (1)<br>1925 (1)<br>1902 (1) |
| δCH,                                                                               | )                                                   | 1890 s                         | 1464 (0)<br>1444 (0)                           | 1890 s                         | 1460 (0)                                       | 1890 s                        |                                              |
| und<br>$v_{as}CC_3$<br>und<br>$\rho CH_3$                                          | }                                                   | 1168 m<br>1012 s               | 1204 (1)<br>1191 (1)<br>1017 (0)               | 1168 m<br>1012 s               | 1203 (1)<br>1192 (1)<br>1170 (Sch)<br>1012 (0) | 1186 m                        | 1210 (1)<br>1194 (1)                         |
| v <sub>s</sub> CC <sub>3</sub>                                                     | J                                                   | 930 s<br>808 Sch               | 934 (0)<br>809 (0)                             | 805 Sch                        | 932 (0)<br>810 (0)                             |                               |                                              |
| $\rho CH_3 Sn$<br>$\delta_s FeCO(aq)$<br>$\delta_s FeCO(aq)$                       |                                                     | 629 Sch                        | 629 (0)                                        | 622 st                         | 635 (0)                                        | 760 sst<br>619 st             |                                              |
| $\delta_{as}$ FeCO(äq)<br>$v_{as}$ PC <sub>2</sub>                                 |                                                     | 608 Sch                        | 582 (Sch)                                      | 608 Sch                        |                                                | 610 Sch                       |                                              |
| $v_{s}PC_{2}, vPC$<br>$v_{as}SnC_{3}, \delta_{as}Fe$                               | eCO(äq)                                             | ) 530 m                        | 573 (0)<br>531 (5)                             | 529 m                          | 572 (0)<br>531 (5)                             | 528 st                        | 534 (5)                                      |
| $v_s SnC_3$<br>$v_{as} FeC(aq), v_s$                                               | FeC(ax)                                             | 505 m<br>490 s                 | 513 (7)<br>490 (Sch)                           | 505 s<br>490 s                 | 513 (9)<br>502 (Sch)<br>472 (Sch)              | 502 st<br>490 s               | 514 (10)<br>502 (Sch)                        |
| v₅FeC(äq)<br>δFeCO<br>δCC                                                          |                                                     | 433 s<br>420 s                 | 440 (3)<br>421 (Sch)                           |                                | 441 (4)<br>422 (Sch)                           | 420 s                         | 441 (3)                                      |
| $\delta C_{2}$<br>v PSn, $v_{as}$ PSn<br>$\delta C_{2}$ PSn, $\delta CF$           | <sub>2</sub> , PSn <sub>3</sub><br>'Sn <sub>2</sub> | 370 s                          | 375 (0)<br>240 (0)                             |                                | 373 (0)<br>243 (0)                             | 350 m                         | 358 (1)                                      |
| $\delta_{as} SnC_3$<br>vPFe?                                                       | 5-C                                                 |                                | 192 (5)<br>163 (4)                             |                                | 191 (5)<br>160 (5)                             |                               | 150 (7)                                      |
| $\delta_{as} FeC(ax), \delta_{s}$<br>$\delta_{as} FeC(aq)$<br>$\delta_{s} FeC(aq)$ | SIC3                                                |                                | 119 (Sch)<br>101 (10)<br>76 (Sch)              |                                | 105 (10)<br>75 (Sch)                           |                               | 125 (8)<br>102 (Sch)<br>75 (8)               |
| δNiPSn                                                                             |                                                     |                                | 52 (Sch)<br>31 (Sch)                           |                                | 55 (Sch)                                       |                               | (-)                                          |

Tab. 3. IR-Absorptionen<sup>a)</sup> und Raman-Emissionen<sup>b)</sup> der Komplexe **4a**, **7a** und **10a** in cm<sup>-1</sup> (sst = sehr stark, st = stark, m = mittel, s = schwach, Sch = Schulter; Werte in Klammern = geschätzte Intensitäten)

<sup>a)</sup> Perkin-Elmer-Infrarot-Spektrometer 457, in Nujol-Suspension zwischen CsJ-Küvetten. Die Bereiche der Absorptionen des Nujols sind ausgespart.

<sup>b)</sup> Raman-Spektrophotometer, Cary 82, in Substanz, Krypton-Laser, Spectra-Physics, 647.1 nm.

#### Schwingungsspektren

Zur Aufnahme der Infrarot-Spektren wurden die Komplexe 1a - 10a in Nujol suspendiert (250-4000 cm<sup>-1</sup>), zur Aufnahme der Ramanspektren wurden die Verbindungen in Substanz verwendet. Die gefundenen Banden sind in den Tabellen 1-3 aufgeführt und weitgehend zugeordnet. Zusätzlich wurden die Komplexe im Bereich ihrer CO-Valenzschwingungen in Form von Pentanlösungen vermessen (Tab. 4), wobei es bei der Aufnahme der Ramanspektren möglich war, Polarisationsmessungen durchzuführen.



Abb. 1. Mögliche Ligandenanordnungen bei Verbindungen (CO)<sub>4</sub>FeP

Wird im Pentacarbonyleisen eine CO-Gruppe durch einen andersartigen Liganden ersetzt, wie dies für die Eisencarbonylkomplexe 1a - 10a zutrifft, so besteht grundsätzlich die Möglichkeit zur Ausbildung von vier Stereoisomeren mit jeweils unterschiedlicher Lokalsymmetrie am Eisen und damit unterschiedlicher Zahl und Art infrarot- und ramanaktiver CO-Valenzschwingungen. Bei quadratisch-pyramidaler Ligandenanordnung um das zentrale Eisen kann das Phosphinmolekül eine Position in der Basisfläche oder die Pyramidenspitze besetzen und bei trigonal-bipyramidaler Ligandenanordnung eine äquatoriale oder axiale Position einnehmen (Abb. 1).

Wie die meisten bisher in der Literatur beschriebenen Monosubstitutionsprodukte des Pentacarbonyleisens  $^{7-10}$  weisen auch die Verbindungen 1a - 10a in Pentanlösung drei Banden im CO-Valenzschwingungsbereich auf (Tab. 4) und sollten daher die Symmetrie  $C_{\rm Au}$  besitzen, d. h. eine trigonale Bipyramide mit dem Phosphinliganden in axialer Position bilden. Nicht im Einklang mit dieser Annahme stehen dagegen die Ergebnisse der Polarisationsmessungen im Ramanspektrum. Anstelle von zwei polarisierten und einer depolarisierten Bande findet man nur eine, nahezu völlig polarisierte und zwei eindeutig depolarisierte Banden (Abb. 2), eine Feststellung, die auch von Bigorgne bei seinen Untersuchungen an analogen Tetracarbonyleisen-Komplexen mit Trimethylphosphin, -arsin bzw. -stibin als fünftem Liganden gemacht wurde<sup>7)</sup>. Die endgültige Entscheidung über dieses Problem lieferte das Ergebnis der von uns soeben an Tetracarbonyl[tri(tert-butyl)phosphin]eisen<sup>11</sup> durchgeführten Kristallstrukturanalyse. Es besagt, daß diese Verbindung prinzipiell die Struktur einer trigonalen Bipyramide mit dem Phosphinliganden in axialer Position besitzt. Letzterer drängt lediglich die drei in äquatorialer Stellung gebundenen CO-Liganden geringfügig in Richtung auf die axial gebundene CO-Gruppe aus der Ebene heraus. Diese Störung der Symmetrie erklärt das zunächst unerwartete Erscheinungsbild der Ramanspektren.



Abb. 2. Raman-Spektrum (1900 bis 2060 cm<sup>-1</sup>) von Tetracarbonyltris(trimethylsilyl)phosphineisen (8a) in Pentanlösung. Polarisationsmessung, Cary 82, Krypton-Laser, 647.1 nm

Daß sowohl die von den reinen Substanzen (Raman) als auch die von deren Nujolsuspensionen (IR) aufgenommenen Schwingungsspektren mehr als die durch die Symmetrie  $C_{3v}$  geforderte Zahl an CO-Banden aufweisen – eine Tatsache, die uns früher

<sup>&</sup>lt;sup>7)</sup> M. Bigorgne, J. Organomet. Chem. 24, 211 (1970).

<sup>&</sup>lt;sup>8)</sup> A. F. Clifford und A. K. Mukherjee, Inorg. Chem. 2, 151 (1963).

<sup>&</sup>lt;sup>9)</sup> F. A. Cotton und R. V. Parish, J. Chem. Soc. 1960, 1440.

<sup>&</sup>lt;sup>10</sup> E. O. Fischer, H.-J. Beck, G. G. Kreiter, J. Lynch, J. Müller und E. Winkler, Chem. Ber. 105, 162 (1972).

<sup>11)</sup> J. Pickardt, H. Rösch und H. Schumann, in Vorbereitung.

| Tab. 4. CO-Valer            | ızschwingu                                        | ngen der Ver<br>(p = polar       | bindungen<br>risiert, dp = | <b>1a – 10a in</b><br>- depolaris | ı cm <sup>-1</sup> , vern<br>iiert) <sup>a)</sup> | nessen in Pent | an-Lösung          |                                    |                           |                          |                           |                    |
|-----------------------------|---------------------------------------------------|----------------------------------|----------------------------|-----------------------------------|---------------------------------------------------|----------------|--------------------|------------------------------------|---------------------------|--------------------------|---------------------------|--------------------|
| Verb                        | indung                                            |                                  |                            | Aı(äq                             | / (t                                              | A1(ax)         | ш                  |                                    |                           |                          |                           |                    |
| (CO)4FeP[C(CH               | د[د(د]                                            |                                  | la .                       | 2045                              | p 15                                              | 968 dp         | 1931 dp            |                                    |                           |                          |                           |                    |
| (CO)4FeP[Si(CF              | I,)][C(CH                                         | [3)3]2                           | 2а                         | 2045                              | p 19                                              | 968 dp         | 1931 dp            |                                    |                           |                          |                           |                    |
| (CO)4FeP[Ge(C               | H <sub>3</sub> )][c(Cl                            | H <sub>3</sub> ] <sub>3</sub> ]2 | 3а                         | 2044                              | p 19                                              | 968 dp         | 1932 dp            |                                    |                           |                          |                           |                    |
| (CO)4FeP[Sn(Cl              | H <sub>3</sub> )][c(CF                            | $[H_3]_3$                        | 4a                         | 2041                              | p 19                                              | 968 dp         | 1930 dp            |                                    |                           |                          |                           |                    |
| (CO)4FeP[Si(CF              | [3] <sub>3</sub> ] <sub>2</sub> [C(C)             | H <sub>3</sub> )3]               | 5a                         | 2045                              | p 19                                              | 968 dp         | 1928 dp            | <sup>a)</sup> Da die I             | age der l                 | Banden im                | Infrarot-                 | und im             |
| (CO)4 FeP [Ge(C             | H <sub>3</sub> ] <sub>2</sub> [C(C                | ΞH <sub>3</sub> ]]               | 68                         | 2044                              | p 19                                              | 968 dp         | 1932 dp            | Ramansp                            | ektrum n                  | ahezu iden               | itisch ist, si            | ind nur            |
| (CO)4FeP[Sn(CI              | H <sub>3</sub> ) <sub>3</sub> ] <sub>2</sub> [C(C | [ <sub>6</sub> ( <sub>6</sub> H: | 7 а                        | 2042                              | p 19                                              | 968 dp         | 1931 dp            | die Kam                            | an-Linien<br>D Snabtra    | angeluhrt<br>allar Va    | I. Zusatzli<br>arhindunae | ch tritt           |
| (CO) <sub>4</sub> FeP[Si(CF | [3]]3 ]3                                          | I                                | 88                         | 2042                              | p 15                                              | 966 dp         | 1931 dp            | eine sehr                          | schwach                   | e Bande b                | ei 1890 cm                | <sup>-1</sup> auf. |
| (CO)4 FeP Ge(C              | H1),],                                            |                                  | 9.a                        | 2042                              | p1                                                | 966 dp         | 1932 dp            | Aufgrund                           | l ihres A                 | bstandes z               | zur E-Ban                 | de und             |
| (CO)4FeP[Sn(CI              | و[د(EH                                            |                                  | 10a                        | 2039                              | p 19                                              | 965 dp         | 1929 dp            | ihrer Inte<br>als <sup>13</sup> CO | ensität ka<br>-Satelliten | nn sie mit<br>hande zuge | einiger Sid               | cherheit<br>erden. |
|                             |                                                   |                                  |                            |                                   |                                                   |                | (.()               |                                    |                           |                          |                           |                    |
| Verbindung                  | (7)                                               | (1)                              | v M(                       | 3.<br>(V)                         | (1)                                               | ~              | v (K)              | (1)                                | ٧                         | C (K)                    | (1) *                     | ~                  |
| D                           | V <sub>s</sub> (K)                                | V <sub>s</sub> (L)               | Δ1                         | V <sub>as</sub> (K)               | Vas(L)                                            | $\Delta_2$     | V <sub>s</sub> (N) | Vs(L)                              | Δ3                        | Vas(N)                   | Vas(L)                    | Δ4                 |
| 1, 1a                       |                                                   |                                  |                            |                                   |                                                   |                | 565                | 564                                | -1                        | 588                      | 591                       | +3                 |
| 2, 2a                       | 635                                               | 631                              | -4                         | 687                               | 684                                               | -3             | 571                | 571                                | 0                         | 590                      | 590                       | 0                  |
| З, За                       | 570                                               | 565                              | -5                         | 590                               | 587.5                                             | -2.5           | 571                | · 568                              | ۳<br>ا                    | 590                      | 590                       | 0                  |
| 4, 4a                       | 509                                               | 505                              | -4                         | 530                               | 517.5                                             | - 12.5         | 573                | 568                                | -5                        | 582                      | 590                       | <b>8</b> +         |
| 5, 5a                       | 633                                               | 634                              | +                          | 692                               | 685.5                                             | -6.5           | 571                | 578                                | + 7                       |                          |                           |                    |
| 6, 6a                       | 569                                               | 566                              | -3                         | 597                               | 593.5                                             | - 3.5          | 580                | 582                                | +2                        |                          |                           |                    |
| 7, 7a                       | 509                                               | 507                              | - 2                        | 530                               | 522                                               | <b>8</b> 0 -   | 572                | 577                                | +5                        |                          |                           |                    |
| 8, 8a                       | 632                                               | 630.5                            | - 1.5                      | 692                               | 689                                               | - <del>3</del> |                    |                                    |                           |                          |                           |                    |
| 9, 9a                       | 567                                               | 564                              | -<br>1                     | 602                               | 594                                               | <b>%</b><br>   |                    |                                    |                           |                          |                           |                    |
| 10, 10a                     | 508                                               | 508.5                            | +1.5                       | 531                               | 523                                               | 8 -            |                    |                                    |                           |                          |                           |                    |

dazu verleitete, den Verbindungen die Symmetrie  $C_{2v}$  zuzuordnen –, läßt sich mit einer durch die Kristallsymmetrie verursachten Bandenaufspaltung erklären. Aufschluß über die in den Komplexen herrschenden Bindungsverhältnisse sind von den Spektren der Pentanlösungen zu erwarten, da man hier annehmen kann, daß die einzelnen Moleküle von ihrer Umgebung weitgehend unbeeinflußt sind. Ein Vergleich der in Tab. 4 für die CO-Valenzschwingungen angegebenen Wellenzahlen zeigt, daß bei allen zehn Verbindungen die Banden in ihrer Lage nur geringfügig differieren. Veränderungen der Bindungsverhältnisse in den Komplexen, die ihrerseits Rückschlüsse auf Unterschiede in den Bindungsverhältnissen der Phosphinliganden, insbesondere im Hinblick auf ( $p \rightarrow d$ ) $\pi$ -Wechselwirkungen zwischen Phosphor und den höheren IVb-Elementen, zuließen, können nicht festgestellt werden. Dies steht im Einklang mit unseren Untersuchungen an analogen Nickelkomplexen<sup>1)</sup>. Die Fe-CO- und Fe-C-Deformationsschwingungen sowie die Fe-C-Valenzschwingungen haben bei allen zehn Verbindungen ähnliches Aussehen, differieren in ihrer Lage nur wenig und wurden durch Vergleich mit Literaturwerten<sup>7,12</sup>) zugeordnet. Obgleich ein Teil dieser Banden mit Absorptionen der Phosphinliganden zusammenfallen, lassen sie sich aufgrund ihrer unterschiedlichen Intensitäten im Infrarotund Ramanspektrum doch zuordnen (Tabellen 1-3).

Die Zuordnung der Schwingungen der Phosphinliganden, die durch Vergleich mit den Spektren der analogen Nickelkomplexe<sup>1)</sup> sowie der freien Phosphine<sup>13)</sup> erfolgte, gelingt nicht immer zweifelsfrei. Die Schwingungen der Methylgruppen, sowie die Phosphorund Element-IVb-Kohlenstoff-Valenzschwingungen zeigen, bezogen auf die entsprechenden Schwingungen in den freien Phosphinen, nur geringe Veränderungen (Tab. 5). Die Fe-P-Valenzschwingung, die im Bereich von 169-250 cm<sup>-1</sup> zu erwarten ist<sup>7,14</sup>, wird im Falle der hier beschriebenen Verbindungen, in welchen der Phosphor zum Teil mit sehr schweren Substituenten verbunden ist, zwischen 150 und  $175 \text{ cm}^{-1}$  auftreten. Die in den Tabellen 1-3 getroffenen Zuordnungen können jedoch nur als Vorschlag angesehen werden, da in diesem Bereich mehrere Deformationsschwingungen, insbesondere die der Element-IVb-Kohlenstoff-Bindung auftreten und zu Bandenüberlagerungen Anlaß geben. Auch ist eine Kopplung mit Phosphor-Element-IVb-Valenzschwingungen nicht auszuschließen. Aus den gleichen Gründen ist es auch nur schwer möglich, die Deformationsschwingungen des inneren Gerüstes am Phosphor sicher zuzuordnen.

# <sup>1</sup>H-NMR-Spektren

Die Aufnahme der <sup>1</sup>H-NMR-Spektren der Komplexe 1a - 10a erfolgte an ca. 10 proz. benzolischen Lösungen. Unser besonderes Interesse galt hierbei den Kopplungskonstanten  $J({}^{1}\text{HCC}{}^{31}\text{P}) = J(\text{I})$  bzw.  $J({}^{1}\text{HCE}{}^{31}\text{P}) = J(\text{II})$ . Die Werte der Kopplungskonstanten sind in Tab. 6 unter  $J(I)_{K}$  und  $J(II)_{K}$  angegeben, zum Vergleich sind die entsprechenden Werte  $J(I)_L$  und  $J(II)_L$  für die freien Phosphine aufgeführt. Bildet man den Quotienten

$$\frac{\Delta J}{J_{\rm L}} = \frac{J_{\rm Komplex} - J_{\rm Ligand}}{I_{\rm Ligand}}$$

<sup>&</sup>lt;sup>12)</sup> M. Bigorgne, A. Loutellier und M. Pankowski, J. Organomet. Chem. 23, 201 (1970).

<sup>13)</sup> H. Schumann und L. Rösch, Chem. Ber. 107, 854 (1974).

<sup>&</sup>lt;sup>14)</sup> J. G. Verkade, Coord. Chem. Rev. 9, 1 (1972/73).

so eliminiert man dadurch den unterschiedlichen Einfluß der verschiedenen  $E(CH_3)_3$ -Gruppen und erhält eine spezifische Größe für die mit der Komplexierung verbundene Änderung der Bindungsverhältnisse am Phosphor. Die beiden Reihen der  $\Delta J/J_L$ -Werte ergeben eine andere Rangfolge der Verbindungen als dies bei den analogen Nickelkomplexen<sup>1)</sup> der Fall ist. Ihr Verlauf läßt jedoch keine Rückschlüsse auf bedeutsame ( $p \rightarrow d$ ) $\pi$ -Wechselwirkungen zwischen Phosphor und den Elementen Silicium, Germanium und Zinn zu.

Reihe I [für J(I)]: 2 < 4 < 3 < 5 < 7 < 1 < 6Reihe II [für J(II)]: 5 < 8 < 2 < 9 < 6 < 3 < 7 < 4 < 10

| Verbindung    | $J_{\mathbf{K}}(\mathbf{I})$ | $J_{\rm L}({\rm I})$ | $\frac{\Delta J}{J_{\rm L}}$ (I) | J <sub>K</sub> (II) | $J_{\rm L}({\rm II})$ | $\frac{\Delta J}{J_{\rm L}}$ (II) |
|---------------|------------------------------|----------------------|----------------------------------|---------------------|-----------------------|-----------------------------------|
| 1, 1a         | 12.4                         | 9.6                  | 0.292                            |                     |                       |                                   |
| 2, 2a         | 13.6                         | 11.0                 | 0.236                            | 4.25                | 3.3                   | 0.288                             |
| 3, 3a         | 13.9                         | 11.0                 | 0.263                            | 4.0                 | 2.6                   | 0.539                             |
| 4, <b>4</b> a | 14.3                         | 11.4                 | 0.254                            | 2.5                 | 1.4                   | 0.785                             |
| 5, 5a         | 14.9                         | 11.6                 | 0.284                            | 4.7                 | 4.0                   | 0.175                             |
| 6, 6a         | 15.4                         | 11.9                 | 0.294                            | 4.6                 | 3.3                   | 0.394                             |
| 7, 7a         | 15.7                         | 12.2                 | 0.287                            | 3.0                 | 1.7                   | 0.765                             |
| 8, 8a         |                              |                      |                                  | 5.2                 | 4.4                   | 0.183                             |
| 9, 9a         |                              |                      |                                  | 4.9                 | 3.7                   | 0.324                             |
| 10, 10 a      |                              |                      |                                  | 3.6                 | 1.9                   | 0.895                             |

Tab. 6. Kopplungskonstanten  $J({}^{1}\text{HCC}{}^{31}\text{P}) = J(\text{I})$  und  $J({}^{1}\text{HCE}(\text{IVb}){}^{31}\text{P}) = J(\text{II})$  der Komplexe  $(J_{\text{K}})$  und der freien Phosphine  $(J_{\text{L}})$ . Angaben in Hz

#### <sup>31</sup>P-NMR-Spektren

Die <sup>31</sup>P-NMR-Spektren der Komplexe **1a**–**10a** wurden an unterschiedlich konzentrierten Lösungen der Verbindungen in Hexadeuteriobenzol aufgenommen. Die protonenentkoppelten Spektren zeigen erwartungsgemäß ein Singulett als Hauptsignal<sup>15)</sup>. Seine jeweilige Lage ist in Tab. 7 unter  $\delta_{K}$  angegeben. Zum Vergleich wurden auch die entsprechenden Werte für die freien Phosphine aufgeführt ( $\delta_{L}$ ) und in Anlehnung an *Grim* et al.<sup>16)</sup> die Koordinationsverschiebung  $\Delta = \delta_{K} - \delta_{L}$  berechnet, die als gewisses Maß für die Änderung der elektronischen Umgebung am Phosphor dienen kann. Der Wert bewegt sich bei den hier besprochenen Verbindungen zwischen 36.7 und 60.7 ppm. Einen weit besseren Einblick in die Zusammenhänge der <sup>31</sup>P-NMR-chemischen Verschiebungen der Liganden und der Komplexe liefert Abb. 3, in der die  $\delta_{K}$ -Werte gegen die  $\delta_{L}$ -Werte aufgetragen sind. Die Tatsache, daß dabei eine geneigte Gerade resultiert, deutet darauf hin, daß sich die elektronische Umgebung am Phosphor naturgemäß beim Übergang vom freien Liganden zum Komplex ändert, jedoch innerhalb der beiden Verbindungsreihen keine grundlegenden Unterschiede in den Bindungen am Phosphor auftreten.

Chemische Berichte Jahrg. 108

<sup>&</sup>lt;sup>15)</sup> Im Falle der Silicium- und Zinn-Verbindungen treten noch Satellitenbanden auf, hervorgerufen durch Kopplung mit den NMR-aktiven Kernen dieser Elemente.

<sup>&</sup>lt;sup>16)</sup> S. O. Grim, D. A. Wheatland und W. Mc Farlane, J. Amer. Chem. Soc. 89, 5573 (1967).

Tab. 7. Chemische Verschiebungen der <sup>31</sup>P-NMR-Signale der Komplexe ( $\delta_{k}$ ) und der freien Phosphine ( $\delta_{1}$ ). (Varian XL 100-15,  $\delta$ -Werte in ppm; 85 proz. Phosphorsäure als externer Standard,

| Verbindung    | δ <sub>κ</sub> | $\delta_{\rm L}$ | Δ      |
|---------------|----------------|------------------|--------|
| 1, 1 <b>a</b> | - 123.2        | - 62.5           | 60.7   |
| 2, 2 a        | - 49.6         | 3.2              | - 52.8 |
| 3, 3a         | -65.8          | -14.3            | - 51.5 |
| 4, 4a         | -63.0          | - 20.7           | - 42.3 |
| 5, 5a         | 62.7           | 108.4            | - 45.7 |
| 6, 6a         | 31.6           | 82.3             | - 50.7 |
| 7, 7a         | 62.5           | 111.1            | - 48.6 |
| 8, 8a         | 214.5          | 251.2            | - 36.7 |
| 9, 9a         | 176.1          | 228.5            | - 52.4 |
| 10, 10 a      | 270.0          | 328.6            | - 58.6 |



Abb. 3. Beziehung zwischen der chemischen Verschiebung im <sup>31</sup>P-NMR-Spektrum der Komplexe  $\delta_{K}$  und der freien Liganden  $\delta_{L}$ 

Unser Dank gilt der Deutschen Forschungsgemeinschaft, dem Senator für Wirtschaft des Landes Berlin und dem Fonds der Chemischen Industrie für finanzielle Unterstützung dieser Arbeit.

# **Experimenteller** Teil

Alle Arbeiten wurden unter sorgfältig von Sauerstoff und Wasser befreitem Argon durchgeführt.

Darstellung der Verbindungen 1a – 10a: Eine Lösung von 2.0 g (0.01 mol) Pentacarbonyleisen in 50 ml wasserfreiem Tetrahydrofuran wird mit 0.01 mol des jeweiligen Phosphins versetzt und unter magnetischem Rühren mit UV-Licht (Quarzlampe Q 81 Hanau) bestrahlt. Der Verlauf der Reaktion wird durch Messen der abgespaltenen Menge Kohlenmonoxid verfolgt. Hierzu wird ein mit Wasser gefüllter Gasometer mit vorgeschalteten Trockenrohren ( $P_4O_{10}$  und Silicagel) verwendet. Nach Abspaltung der berechneten Menge Kohlenmonoxid (ca. 70–90 min) entfernt man das Lösungsmittel i. Vak., kristallisiert das zurückbleibende Rohprodukt mehrmals aus Pentan

| т.,  |                                                          | Summenformel                                                         | Mol                       | Ana           | lvse        |             |
|------|----------------------------------------------------------|----------------------------------------------------------------------|---------------------------|---------------|-------------|-------------|
| I et | racarbonyleisen(0)                                       | ZersP.                                                               | Masse <sup>a)</sup>       | С             | Ĥ           | Р           |
| 2a   | -di( <i>tert</i> -butyl)trimethyl-                       | C <sub>15</sub> H <sub>27</sub> FeO₄PSi                              | Ber. 386.30               | 46.64         | 7.05        | 8.02        |
|      | silylphosphin-                                           | 65°C                                                                 | Gef. 389.0                | 46.2          | 6.9         | 8.0         |
| 3a   | -di( <i>tert</i> -butyl)trimethyl-                       | C <sub>15</sub> H <sub>27</sub> FeGeO₄P                              | Ber. 430.81               | 41.82         | 6.32        | 7.19        |
|      | germylphosphin-                                          | 98°C                                                                 | Gef. 449.9                | 41.6          | 6.0         | 7.3         |
| 5a   | - <i>tert</i> -butyl-bis(trimethyl-                      | C <sub>14</sub> H <sub>27</sub> FeO <sub>4</sub> PSi <sub>2</sub>    | Ber. 402.37               | 41.79         | 6.76        | 7.70        |
|      | silyl)phosphin-                                          | 92°C                                                                 | Gef. 400.9                | 41.2          | 6.6         | 7.6         |
| 6a   | - <i>tert</i> -butyl-bis(trimethyl-                      | C <sub>14</sub> H <sub>27</sub> FeGe <sub>2</sub> O <sub>4</sub> P   | Ber. 491.39               | 34.22         | 5.54        | 6.30        |
|      | germyl)phosphin-                                         | 102°C                                                                | Gef. 511.2                | 34.2          | 5.6         | 6.2         |
| 7a   | - <i>tert</i> -butyl-bis(trimethyl-<br>stannyl)phosphin- | $\begin{array}{c} C_{14}H_{27}FeO_4PSn_2\\ 160^{\circ}C \end{array}$ | Ber. 583.59<br>Gef. 587.8 | 28.81<br>28.7 | 4.66<br>4.8 | 5.31<br>5.0 |

Tab. 8. Analysenwerte der Komplexe 2a, 3a, 5a, 6a und 7a

<sup>a)</sup> Kryoskopisch in Benzol.

[16/75]